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A thin layer of liquid advancing over a dry, heated, inclined plate is studied. A 
lubrication model with contact line motion is derived. The plate is at constant 
temperature, and the surface Biot number is specified. The steady-state solution is 
obtained numerically. In addition, the steady-state solution is studied analytically in 
the neighbourhood of the contact line. A linear stability analysis about the steady 
state is then performed. The effects of gravity, thermocapillarity and contact line 
motion are discussed. In particular, we determine a band of unstable wavenumbers, 
and the maximum growth rate as a function of these parameters. 

1. Introduction 
Many industrial processes involve the coating of a solid surface with a thin liquid 

film. In general, the solid surface or the film may be heated. These films can be 
driven by gravity, centrifugal force or an applied pressure. One problem that may 
arise during the initial wetting of the solid is for a spanwise instability to develop 
along the leading edge of the film (Williams 1977; Huppert 1982). This instability 
can exhibit itself in the form of fingers, or a sawtooth-like pattern. The appearance 
of the sawtooth pattern may not be harmful, since the solid can eventually become 
completely wetted. On the other hand, the fluid from the film can flow wholly within 
the fingers, leaving stable dry regions. Our aim here is to consider the coating of 
an inclined plane by gravity under non-isothermal situations. This case should have 
the features of many industrial coating processes, while allowing for comparison to 
experiments. Our primary concern will be to study the linear stability of the leading 
edge in a non-isothermal situation. 

The instability of the leading edge of a sheet of viscous isothermal fluid flowing 
down an inclined plane has been illustrated in the experimental work of Huppert 
(1982). He observed cases where the leading edge developed either long parallel- 
sided fingers or where a sawtooth shape developed which moved down the inclined 
plane. Additional experimental work on this problem was done by Silvi & Dussan 
V. (1985). They observed a similar behaviour of the leading edge but also noted 
that the magnitude of the contact angle at the leading edge could explain the two 
leading-edge configurations. Hocking (1990) noted that, near the leading edge of the 
fluid, there is a hump whose height is considerably larger than that of the sheet some 
distance up the plane. This suggested that one could study the motion of a ridge of 
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fluid with both a leading and a trailing edge and capture the physics of the sheet 
problem. This analysis contained the effect of the contact line, in the quasi-steady 
limit. Hocking & Miksis (1993) again studied the ridge model, but followed the 
quasi-steady model into the nonlinear regime numerically, and determined conditions 
for the formation of droplets as a function of the contact angle and the other 
physical parameters. They also studied the ridge model without the quasi-steady 
assumption. In this case a linear stability analysis gave a preferred wavelength for 
the instability. 

The linear stability problem for the leading edge of a fluid sheet was first studied by 
Troian et al. (1989). Their model did not have a contact line present, but there was a 
very thin film of fluid extending down the plane in front of the sheet. The leading edge 
was identified as the front of a narrow region where the height of the fluid changed 
from a slowly varying relatively thick layer to a very thin region. They showed that 
there was a preferred wavelength for linear stability of spanwise disturbances to the 
leading edge, and that this wavelength was only weakly dependent on the thickness 
of the film ahead of the edge. De Bruyn (1992) has confirmed experimentally some 
qualitative features of the theoretical predictions of Troian et al. As noted above, 
Hocking & Miksis (1993) also found a preferred wavelength in their ridge model. The 
introduction of the contact line motion in the model of Hocking & Miksis required 
that slip along the solid surface be introduced, in order to remove the force singularity 
at the contact line. The preferred wavelength depended weakly on the value of the 
slip coefficient, similar to the weak dependence of the Troian et al. model on the 
downstream thickness of the film. 

Goodwin & Homsy (1991) have determined the steady-state profile of a film 
moving down an inclined plane at a constant velocity with no spanwise variation in 
the isothermal case. They solved the Stokes equations numerically with no-slip along 
the inclined plane. Hence they were not restricted by the small slope assumption of 
lubrication theory, but their solution did have the non-integrable stress singularity 
at the contact line. It is not clear how this approach can be extended to a dynamic 
situation. Also Schwartz (1989) has studied isothermal viscous flows down an inclined 
plane in the lubrication limit, assuming that the film completely wets the plane. He 
determined numerically the evolution of a disturbance along the film. 

There has been a considerable amount of work on the dynamics of heated films. 
For example, thermocapillarity has been incorporated into falling films by Lin (1973, 
Sreenivasan & Lin (19729, and Kelly, Davis & Goussis (1986). Burelbach, Bankoff & 
Davis (1988) have considered the rupture of evaporating heated films. For a thin film 
on a heated inclined plane the interaction of the two modes of instability, namely 
hydrodynamic (or surface wave) and thermocapillarity instability, has been examined 
by Joo, Davis & Bankoff (1991), who developed an evolution equation for two- 
dimensional disturbances along a film interface. Their evolution equation accounts 
for the viscosity of the film, gravity, surface tension of the interface, thermocapillarity 
and evaporation effects. 

The non-isothermal spreading of a liquid drop on a heated (or cooled) horizontal 
surface, accounting for the motion of the contact line, was first studied by Ehrhard 
& Davis (1991). They developed a lubrication model for the drop interface which 
included thermocapillary effects and contact line motion. One of their interesting 
results was that, for zero advancing contact angle, heating will prevent the drop from 
spreading to infinity. Ehrhard (1993) did a series of experiments on the spreading of 
non-isothermal drops and observed good quantitative agreement with the predictions 
of Ehrhard & Davis (1991). 
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We will develop a model in the non-isothermal lubrication limit for the motion of 
a fluid film down an inclined plane which accounts for the motion of the contact line. 
The presence of a contact line introduces a non-integrable stress singularity when 
the no-slip boundary condition is used at the plate (Dussan V. & Davis 1974). To 
eliminate this non-integrable stress singularity a Navier slip condition with a singular 
slip function (Greenspan 1978) is introduced along the solid surface. Changes in 
surface tension are introduced into the model, induced by temperature changes. The 
dependence of surface tension on temperature is introduced such that far from the 
contact line we recover the usual linear first approximation, but in the neighbourhood 
of the contact line the linear dependence is modified so that do/dT = 0 at the 
contact line. With these modelling assumptions the relevant physical quantities are 
all well-behaved functions at the contact line. We study the steady-state solutions 
that move down the plane at a constant velocity and with no spanwise variation. The 
linear stability of these states will then be determined as a function of the physical 
parameters. In addition, we will solve for the local behaviour of the interface in 
the neighbourhood of the contact line analytically and show how these analytical 
solutions can help predict the behaviour of the interface. 

2. Formulation of the problem 
Consider an infinite layer of liquid as it advances on a non-isothermal plane solid 

surface that makes an angle a with the horizontal. The liquid is modelled as a three- 
dimensional Newtonian non-volatile incompressible fluid surrounded by a passive 
gas. We choose our coordinate system (x, y, z )  so that x and y lie in the plane, with x 
the down-slope coordinate. The free surface will be located at z = h(x, y, t )  where z 
is perpendicular to the plane (see figure 1). 

The velocity and thermal fields are governed by the Navier-Stokes, continuity and 
energy equations : 

P {  g +d*} = - -vp + pv2u + p g ,  (2.1) 

p C , { g + u * V T  1 = p V 2 T  

In the above equations g = ( g  sin a, 0, -g cos tx) denotes the acceleration due to gravity, 
a is the angle the inclined plane makes with the horizontal, u = (u, v, w) the velocity 
vector, p the pressure and T the temperature of the liquid. The density p ,  the viscosity 
p, the heat capacity C, and the thermal conductivity p of the liquid will be taken as 
constants. 

Along the liquid-solid interface z = 0 the boundary conditions are those of an 
impenetrable, perfectly conducting surface : 

w = 0, 
T = To. 

In order to eliminate the stress singularity at the contact line, we need to relax the 
no-slip condition (see e.g. Dussan V. 1979). This can be done by using a Navier-type 
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FIGURE 1. Geometry and coordinate system for a film flow down an inclined plane, 
(a) cross-section in the (x, 2)-plane, (b)  plan view of the (x, y)-plane. 

slip condition along the solid interface: 

u - I ( h ) ( g + g )  =o,  u-X(h) (2.6a, b)  

Here we will use a slip coefficient function A(h) in equation (2) of the form 

(2.7) 
R 

A(h) = -, 

with 1, the slip coefficient, a positive constant. This form of the slip coefficient function 
was introduced by Greenspan (1978) in his investigation of drop spreading. Different 
forms of the slip coefficient have been used but only small qualitative differences 
in the dynamics of the contact line are observed (Dussan V. 1976; Haley & Miksis 
1991). 

At the liquid-gas interface z = h(x,y, t) ,  we have the kinematic boundary condition: 

h 

and the conditions that the stress tensor T balances in the normal and tangential 
directions : 

n -  T e n  = 2 ~ 0 ,  (2.9) 
z T .n = z .Vo, (2.10) 

where n and t are the normal and tangential unit vectors, with n pointing out of 
the surface, while IC is the mean curvature of the surface. Condition (2.10) must be 
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FIGURE 2. Dependence of the scaled surface tension o/cro on the scaled temperature T/To  for 
different values of the parameter r .  

complemented by an equation of state for the surface tension: 

c = co - y ( P  - T O )  ( 1 - exp [ - 1';- "I), (2.11) 

where c0 denotes the value of surface tension at the plate temperature To, TI the 
temperature of the interface, y is a positive constant and r is a small positive constant. 
Since we are heating the liquid from below, TI < To away from the contact line. 
Note that for r small, is approximately a linear function of the surface temperature 
T' everywhere, except in a small neighbourhood of the contact line (figure 2). This 
linear dependence of surface tension on temperature is the usual first approximation. 
We have modified this approximation only in the neighbourhood of the contact line, 
where the exponential term in (2.11) forces da/dT' = 0 there. This dependence of 
surface tension on temperature, along with the slip condition (2.6) and (2.7), make 
the fluid interface a regular function at the contact line. Hence we are not concerned 
about any singularities there. This regularity could have also been accomplished in the 
model by allowing the exponential term in (2.11) to depend on the film thickness or the 
distance from the contact line. The use of a modified equation of state for the surface 
tension is thus a mathematical device to obtain a regular problem at the contact line 
in the non-isothermal, non-evaporating case. However, physical arguments can be 
put in its favour. First, experimental measurements for a slowly advancing contact 
line (Truong & Wagner 1987; Cazabat 1991) and theoretical studies (Renk, Wayner 
& Homsy 1978; de Gennes 1985) have indicated the existence of a very thin 'foot' 
which serves as a bridge between the bulk liquid and the adsorbed layer on the 'dry' 
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solid. This implies a region of large curvature where the film thickness passes from a 
region of strong dispersion forces to one where such forces become weak compared to 
surface tension and gravitational forces. In this foot the fluid temperature is the same 
as the wall temperature, taken to be a constant. Hence the gradient of surface tension 
in this foot is V o  = (do/dT)VT. Outside this region, the surface tension varies 
linearly with temperature. Equation (2.1 1) conveniently describes this behaviour. One 
can also note that surface tension is no longer independent of film thickness for such 
ultrathin layers, and, in fact, is poorly defined. 

The dynamics of the isothermal fluid in the neighbourhood of a contact line are 
very complicated, and the usual no-slip boundary condition results in a non-integrable 
stress singularity. One way to resolve this problem is to introduce slip at the plate in 
the form (2.6). In the case where j ( h )  is a constant, integrable singularities are still 
present in the isothermal case. However, this is not the case when a slip function 
like (2.7) is used, so that the solution is regular. Hence linear stability of a fluid 
interface with a contact line can be discussed. When we consider thermocapillarity 
effects, condition (2.11) results in a regular problem at the contact line and allows a 
discussion of linear stability. 

Following Ehrhard & Davis (1991) for a non-evaporating liquid (T ,  < T,, where 
T, is the saturation 
liquid-gas interface 

temperature at the ambient pressure, p g )  the heat transfer at the 
is governed by a mixed-type condition, 

Bz aT + $ T - Tg)  =o.  (2.12) 

In this equation, n is the magnitude of the normal unit vector, ,Gg is the thermal 
conductivity of the gas at the constant temperature Tg, and A is the thickness of the 
thermal boundary layer within the gas. A heat transfer condition such as (2.12) at the 
interface permits us to study the limiting cases between an adiabatic and a perfectly 
conducting boundary. 

The leading edge, or contact line, is located at x = a(y , t ) .  Here the boundary 
conditions are contact with the plate, 

h = 0, (2.13) 

plus the definition of the apparent contact angle 8 as the apparent angle the film 
interface makes with the solid surface z = 0, in the plane perpendicular to z = 0 and 
containing the normal vector to the contact line, 

(2.14) 

We will assume a relationship between the slip velocity at the contact line, Us, and 
the contact angle 19 of the form 

Us = k (8  - (m  2 l), (2.15) 

where 6, is the static (advancing) contact angle and k an empirical positive constant. 
The origins of relationship (2.15) come from the experimental curves of contact 
angle us. slip velocity (see for example Schwartz & Tejeda 1972). In these curves 
it is the apparent (measured) contact angle that is reported, as opposed to the 
actual contact angle 8. Nevertheless, we use (2.15) as our 6' us. Us condition. 
Some additional discussion on this matter can be found in Dussan V. (1976) and 
Hocking (1992). The cubic dependence m = 3 is suggested by the experimental 
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results of Schwartz & Tejeda (1972) and Ehrhard (1993) and will be used later in 
the presentation of the results. When considering the spreading of a droplet with 
a contact line, Haley & Miksis (1991) and Ehrhard & Davis (1991), for the non- 
isothermal case, used different values of m (= 1,3), without a relevant change in their 
results. The limiting case of a fixed contact angle, used by Hocking & Miksis (1993), 
for the ridge of fluid over an inclined plane, is contained in the present analysis when 
we let k -+ m. 

Finally a boundary condition is necessary at x = -a. Here we assume a film of 
uniform thickness h,. Hence as 

x -+ -a, then h -+ h, (2.16) 

and all derivatives of h vanish. 
We begin our study of the above equations by introducing dimensionless variables. 

Because the film has a uniform thickness at infinity, the volumetric flux per unit 
length Qm (in the spanwise direction) is constant there and equals 

a=-( pghk 3P 1 + 3 -  k) sina. (2.17) 

This drives the motion of the interface down the inclined plane and introduces a 
velocity scale U = Q,/h,. The length scale in the direction perpendicular to the 
plane is h,. When we balance the hydrostatic pressure, a capillary length scale for the 
x- and y-coordinates can be chosen, 1 = (o0/3pU)’/~h,, and is expected to be much 
larger than the film thickness. The complete set of dimensionless variables is 

The ratio of length scales is related to the capillary number 

3PU C a =  ~ 

no 
(2.19) 

by h,/l = C U ” ~ .  Our aim is to derive an evolution equation for the motion of the 
film interface in the lubrication limit, i.e. 

E = h J l 4 1 .  (2.20) 

Our analysis will parallel the work of Ehrhard & Davis (1991) who considered the 
spreading of a droplet. We first introduce the scaled variables (2.18) into the equations 
of motion (2.1)-(2.16). For example the heat transfer equation (2.3) becomes 

(2.21) 

where the Reynolds number Re = Q,/v and the Prandtl number Pr  = b / p  C,  v are 
assumed to be order-one quantities. Then we look for a solution in the form of a 
perturbation series in E .  We consider only the problem for leading order in c, i.e. 
lubrication theory. For example, at leading order (2.21) implies that f is a linear 
function of z .  These leading-order equations can then be integrated. The result is that 
all the leading-order dependent variables can be shown to be explicit functions of the 
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leading-order f i  and the independent variables. In addition, an evolution equation for 
the leading-order f i  can be determined. The resulting nonlinear evolution equation 
for the free surface is L, 1 +33, + M Y ( h )  (h2 +23,) h, 

a 
aY 

+ - { (h3 + 3Ah) ((V2h),  - Gh,) + M Y ( h )  (h2 + 21) h y }  = 0, (2.22) 

where the hats have been dropped, h represents the term that is leading order in 
f and V2 is the two-dimensional Laplacian operator, a2/ax2 + d2/ay2. The term 
that contains the surface tension gradients due to the heating is represented by the 
function 

(2.23) 
1 

(1 + Bih)2 
Y ( h )  = 

A series of dimensionless parameters appear in equations (2.22) and (2.23) that 
contain the physical information of the model. The importance of the vertical 
pressure gradients with respect to the other forces is represented by the parameter G, 
defined by 

while the scaled slip coefficient, A, is given by 

. x  

(2.24) 

(2.25) 

Note that for large inclination angles, 01 m z/2, G can be neglected. 

due to heating, to the surface tension at the plate temperature: 
The Marangoni number M compares a characteristic change in surface tension, 

(2.26) 

With this definition, M also contains the term that controls the heat flux at the 
liquid-gas interface, i.e. the Biot number Bi:  

(2.27) 

Using these definitions we can retain the thermocapillary effects even when the heat 
transfer is very poor at the free surface. The limit Bi + 0 would be the case of no 
heat flux in the surface. Hence the dimensional temperature field is constant, with the 
value TO. The other limiting case, Bi  + 00, is appropriate for a perfectly conducting 
gas, so that the surface is maintained at a constant temperature, with dimensional 
value Tg.  The parameter A, defined by 

(2.28) 

is expected to be large (but the whole term must be retained in order to have 
thermocapillary effects), and contains the heat transfer coefficient. This parameter A 
defines a small region of rapid change between a linear variation in surface tension 
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with temperature, where da /dT  = -y, and da /dT  = 0 at the contact line. For a 
heated plate To - Tg > 0 and hence all of the dimensionless parameters are positive. 

To leading order in E ,  the boundary conditions at the contact line x = a(y, t )  are 

h=O (2.29) 
and 

where D is the ratio of the velocity scales 

and 8, the scaled static contact angle 

(2.30) 

(2.31) 

(2.32) 

The parameter D measures the mobility of the contact angle. The value D = 0 
corresponds to a fixed contact angle. 

The boundary conditions far upstream of the contact angle, x --+ -a, are: 

h =  1, (2.33) 

With the above definitions, the leading-order thermal, pressure and velocity fields 
plus the condition that all derivatives of h vanish as x --+ -m. 

can be obtained from the shape of the interface h :  

(2.34) 

P ( X ,  Y ,  Z ,  t )  = G(h - Z )  - V2h,  (2.35) 

u ( x , y , z , t ) = 3  ( $ + z h + i )  ( (V2h) , -Ghx+-)  1 + ( z + ; ) 2 M Y ( h ) h x ,  1 + 3 i  
(2.36) 

(2.38) 

The assumptions about slip, (2.6) and (2.7), and the dependence of surface tension on 
temperature in the form (2.1 1) make all the variables well-behaved functions, even at 
the contact line. In particular, the form of Y ( h )  gives bounded velocities at x = a(y, t ) ,  
something that the limit A --f 00, i.e. a linear relation, cannot acomplish. 

3. Steady state 
We begin our analysis of the nonlinear evolution equation (2.22) by looking for 

steady-state solutions which move down the inclined plane at a constant velocity and 
have no spanwise variation. In the isothermal case this profile will be determined by 
a balance between gravity, surface tension and viscous forces. In the non-isothermal 
case, we also have thermocapillarity effects. Once computed, we will determine the 
linear stability of this steady-state solution. 
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The steady-state film thickness, ho, is determined by looking for solutions inde- 
pendent of y in the system (2.22), (2.29)-(2.33) and by translating the origin to the 
contact line, x = ao(t): 

4Y, t )  +. ao(t), 4% Y ,  t )  -+ ho(0  (3.1) 

5 = x - ao(t), z = t. (3.2) 
Introducing (3.1) and (3.2) in the system (2.22)-(2.23), integrating once and applying 
condition (2.29), we find that the steady-state interface shape is determined by 

- Uo ho + (ho3 + 3iho) hi  - ~ h b  + - ) + M Y(ho)(h? + 2i)hb = 0, (3.3) 1 + 3 i  

where the prime denotes differentiation with respect to 5 and the overdot differentia- 
tion with respect to time. The boundary conditions are 

ho(O) = 0, (3.4a) 

(3.4b) 

ho(5 +. -00) = 1, (3.4c) 
along with the condition that the derivatives of ho vanish as +. --GO. Taking the 
limit 5 -+ -a in (3.3) and using (3.4~) implies that bo = 1. 

The system (3.3)-(3.4) determines the steady-state profile. We note that it is 
independent of the value of the exponent m appearing in equation (2.15). The contact 
angle 8 is the sum of a static contact angle 8, and D. Before solving (3.3)-(3.4) 
numerically, we wish to make some observations about the behaviour of the steady- 
state solution. First, consider the solution far upstream where ho -+ 1. We linearize 
(3.3) about the upstream solution ho = 1 and look for solutions of the resulting 
third-order linear equation in the form exp(r5). It is easy to show that r is a root of 
the cubic equation 

where 
r3  + 3pr + 2q = o (3.5a) 

- G  M(1+2A)Y(l) 
1 + 3 1  

3 p  = 

and 

(3.5b) 

(3.5c) 

Since q > 0, one of the roots, rl, is real and negative and must be discarded. The 
remaining roots r2 and r3 depend on the sign of 

3 

4) . 1 1 M ( 1 + 2 i ) Y ( l )  
(1 + 3L)4 +-( 27 1+3L 

d =  

For the case where d > 0, r2 and r3,  are complex conjugates with positive real part: 

resulting in the exponential, oscillatory decay of the solution : 

ho = 1 + { C  exp ( ~ 2 5 )  + C.C. ) , 5 +--GO, (3.8) 
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where C.C. denotes complex conjugate and C is a complex constant. As we decrease 
the angle a that the plate makes with the horizontal, the parameter G increases and 
eventually d will be negative. In this case all of the roots of (3.5) are real, and again 
only two of them are positive: 

where 

(3.9a) 

(3.9b) 

In this case, there is no oscillatory behaviour of the far-field decaying solution: 

ho = 1 + C2 exp ( r 2 5 )  + C3 exp ( i - 3 5 ) .  . 5 ---*-a, (3.10) 

where Cz and C3 are real constants. 
From this analysis, one can conclude that the far-field solution depends weakly on 

the small parameter 1,. On the other hand, for small p ,  one of the complex roots of 
(3.5) is given by 

i.e. as the Marangoni number increases (or G decreases), the wavelength along the 
interface far upstream decreases, but the undulations are less damped. 

Now consider the behaviour of the solution of the nonlinear equation (3.3) in the 
neighbourhood of the contact line. We look for a solution in the form of a power 
series in 5 about 5 = 0: 

n=O 

Substituting the series (3.12) into (3.3), using the boundary conditions (3.4), and 
collecting powers o f t ,  we obtain the values of the coefficients. In the isothermal case, 
M = 0, these are 

(3.13a) Gc 1 GC2 +-, c 4 = -  
12 

1 c 'o=o,  c1 = - ( Q , + D ) ,  c 3 =  
181(l +31) 6 

and for n > 4 

Note that the c, depend on the value of the second derivative at the contact line 
hi(0) = 2c2. This number is the only unknown coefficient in the series solution, and 
can be determined by matching to the solution away from the contact line. This is a 
difficult task, but we can do it numerically if necessary. It is important to note that 
since a solution of the nonlinear equation (3.3) can be found in the form of a power 
series, then ho and all of its derivatives are finite at the contact line. Hence there is 
no singularity at the contact line. This result is due to the form of the slip function 
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(2.7) we have chosen. A constant slip function would have led to a singularity in the 
second derivative. A similar observation has been noted for the initial motion of a 
droplet by Haley & Miksis (1991). 

In the non-isothermal case when M # 0 extra terms must be added to the 
coefficients in (3.13). The exact values can be found in the Appendix. Nevertheless, 
the situation is very similar to the isothermal case: ho and all of its derivatives are 
finite at the contact line. This is a direct consequence of equation (2.11). 

In order to understand the steady-state solution, we need to solve the nonlinear 
equation (3.3) numerically. This is done by using a Chebyshev pseudo-spectral 
approximation of the derivatives (Canuto et al. 1988), and then forcing the boundary 
conditions (3.4) at the contact line 5 = 0 and at the end of the computational domain 
5 = -L. The computational domain is given by --L < 5 < 0 and L is chosen 
sufficiently large in order to simulate the correct boundary condition, which should 
be imposed at negative infinity. For the calculations presented here, setting L = 20 
seemed to give accurate results. In addition, at 5 = -L, we set the first derivative 
of ho to zero. The result of this discretization is a nonlinear system of equations for 
the values of ho at the collocation points. This system was solved by using Newton's 
method. 

Although the specific value of the slip coefficient is unknown, we expect it to be 
small. As shown in Haley & Miksis (1991) in their study of droplet spreading, the 
magnitude of the slip coefficient affects the quantitative behaviour of the contact 
line motion, but not the qualitative behaviour. However, as can be seen from the 
coefficients (3.13) in the power series expansion about the contact line, as 2 decreases 
the magnitudes of the derivatives increase. Hence, the smaller the 1, the larger the 
number of collocation points we need in the neighbourhood of the contact line in 
order to resolve the solution. We have set 1 = 0.001 in all of the results presented 
here. This number does not appear to give results much different than for smaller 
values of 1, while it allows for a reasonable number of collocation points in our 
calculations. 

We begin our study of the steady-state profiles with the isothermal case, M = 0. In 
figure 3 we plot the steady-state film thickness as a function of 5 ,  for BS = 0.6, D = 1 
and G = 0,1.5,2.5,4. As G increases, the pressure in the interface grows, and the 
interface gets smoother. As shown in figure 3, the amplitude of the initial hump 
decreases with increasing G, while its width increases, as implied by the far-field 
analysis. For small values of G, this behaviour was predicted by equation (3.11) to 
be linear in G. On the other hand, for G > 3/(1 + 31)213 the upstream oscillatory 
behaviour is lost (G = 4 in figure 3). 

Continuing with our investigation of the isothermal case, M = 0, in figure 4 we 
plot the steady-state film thickness for G = 1.0 and different values of the contact 
angle: 6' = D + 8, = 0.61,1.6,3.1,4.1. This quantity only appears in the boundary 
condition for the derivative of the steady state at the contact line (3.4). The value of 
8 does not affect the value of the upstream solution, but the derivative at the contact 
line changes with 8. In figure 4, we show how the height of the hump increases with 
the contact angle 6'. 

Consider now the heated case. In equation (3.3) M , A  and Bi appear as parameters 
and if Bi = 0, then one should also set M and A equal to zero. Nevertheless, we 
will first ignore the heat transfer coefficient Bi. As discussed in Ehrhard & Davis 
(1991), this is still a reasonable limit to consider because even with a quasi-static 
temperature profile a growing wave has variations in its crest and trough surface 
temperatures. This is a possible mechanism of thermocapillarity instabilities along 
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FIGURE 3. Steady state for different values of the parameter G with Os = 0.6, D = 1, 1 = 0.001 and 

no heat transfer, i.e. M = 0. 

the interface. In figure 5 we plot the film thickness for G = 1.0, D + 8, = 1.6, A = 1.0 
and M = 0,1,2,2.5. We find that, as A4 increases, the height of the hump increases 
and the wavelength of the oscillations decreases upstream. The latter observation 
is consistent with the linear analysis estimate of the behaviour of the interface far 
upstream. The Marangoni number M opposes the smoothing caused by increasing 
the parameter G. For the values considered here, we have the oscillatory decaying 
case, equations (3.7) and (3.8). In particular, we find that the real part of the complex 
root, m2, decreases as M increases from zero, i.e. the exponential damping decreases 
with increasing M .  The magnitude of the imaginary part increases and the wavelength 
of the far-field oscillations decreases with the Marangoni number. One would expect 
this result because of the appearance of tangential stresses in the liquid-gas interface 
as a result of surface tension gradients due to the heating. The Marangoni number 
does not modify the value of the contact angle, and only affects higher derivatives. In 
figure 6 we keep the same parameter values as in figure 5,  except M = 1 is fixed and 
Bi = 0, 0.2, 0.6, 5.0. The Biot number does not modify the value of the contact angle. 
As we increase its value from the adiabatic limit Bi = 0, more energy is dissipated 
at the interface and this decreases the height of the hump. It also increases the 
wavelength of the upstream surface oscillations. Hence surface heat transfer tends to 
inhibit thermocapillary effects and makes the surface smoother. 

The effect of the parameter A on the solution is shown in figure 7. For G = 
1,8, = 1.6 and Bi = 0 fixed, we consider two different values of the Marangoni 
number, M = 1 and M = 2, and in each case we set A = 1 and A = 5. When 
A = 0, ( Y ( h 0 )  = 0), there are no surface tension variations and consequently no 
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FIGURE 4. Steady state for different values of the contact angle 0 = D + Qs, with G = 1 , L  = 0.001 

and no heat transfer, i.e. M = 0. 

heating effects. When A increases, the exponential term in the function Y(h0) is 
designed to have little effect on the far-field solution; in fact, Y (1) has a maximum 
value when A = 2 and Y(1) = 1 as A +. 00. Nevertheless, the Marangoni effects 
increase a little as shown in figure 7. Like M ,  the parameter A only affects the higher 
derivatives at the contact line (see Appendix). 

4. Linear stability 
Our aim here is to determine the linear stability of the basic state ho which was 

determined numerically in the previous section. Let the free surface h(x, y, t )  and the 
leading edge a(y,t) suffer small increments from their steady values ho(5) and ao(t). 
We obtain the equations for the perturbations by neglecting powers of 6 higher than 
the first when we substitute into equation (2.22) the dependent variables 

a(y, t )  + ao(t) + 6 exp {ot + iqy}, (4.1) 

h(x, y, t )  ---f ho(5) + 6h1(5) exp {ot  + iqy}. (4.2) 
Here the perturbations have been expressed in terms of normal modes. The resulting 
linear equation is 

A&)h;”’ + A3(ho)h’,” + Az(h0)hY + Al(hO)h’, + AO(h0)hl = -oh1 (4.3a) 
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FIGURE 5. Steady state for different values of the Marangoni number M ,  with 

G = 1, 0, = 0.6, D = 1, 2 = 0.001, A = 1 and no heat flux in the free surface, i.e. Bi = 0. 

where the coefficients A,  are given by 

The corresponding boundary conditions for the linear problem are 
D 
m hl(0)  = -hb(O) = Bs + D, hi’(0) = -hi(O) - - C, hi(< + -00) = 0, (4.4) 

and the derivatives of hl vanish as 4 + -00. 
For every value of the wavenumber q, we obtain an eigenvalue problem for the 

growth rate cr. We look for complex eigenvalues o with the physical parameters 
fixed, and assign a value to the wavenumber q. This is done numerically, using 
a Chebyshev spectral method to discretize the derivatives. The eigenvalues of the 
real matrix associated with the discrete problem are found using the routine ‘hqr’ 
from Eispack for real upper Hessenberg matrices (Smith 1982). In all of the cases 
we have considered, the eigenvalue with the largest real part was found to have 
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F~GURE 6. Steady state for different values of the Biot number Bi, with 

G = 1, B, = 0.6, I) = 1, i = 0.001, M = 1 and A = 1. 

Im(o} = 0, i.e. the fastest-growing mode is purely real. This implies that one could 
have looked only for real eigenvalues. In the following, we present results only for 
the eigenvalue o with the largest real part. Typical curves are shown in figure 8, 
where the real eigenvalue o is given as a function of the wavenumber q. In particular, 
for q = 0 the eigenvalue with the largest real part is CJ = 0 and the correponding 
eigenfunction is hl(x) = -hb(x). This can be shown by simple substitution into 
equations (4.3) and (4.4). As q increases, CJ increases and remains positive, reaches 
a maximum omax at q = qmax, then decreases with increasing q and becomes zero 
at q = qb .  For q > q b  all the eigenvalues have negative real part. Hence the 
steady state is unstable for values of q between 0 and q b ,  the upper boundary of 
the unstable wavenumbers. In figure 8 we have considered four different cases with 
rn = 3, D = 1.0, 1 = 0.001, 0, = 0.6, A = 1 and Bi = 0. In the first, we have set 
G = 0, M = 0 , i.e. no heat transfer and a vertical wall. Then we decrease the plate 
angle, such that G = 2.5. We see that as a result, qmax, q b  and omax decreased with 
G. Next we fix G = 1 and include thermocapillary effects by putting M = 0.5 and 
M = 1. Now, qmax, q b  and omax increased with M .  Clearly from figure 8 we see that 
the important features of the curves are omax, the corresponding value of q = qmax 
and the value of q b .  The value of q b  bounds the range of unstable wave-numbers, 
while cmax and qmax specify the expected observable growth rate and corresponding 
wave-number. In order to understand the effect of all the parameters on the linear 
stability of the film, in the following we will show how these three variables depend 
on the physical parameters G, O,, D, M ,  Bi and A .  In all cases, we will take rn = 3 
in the slip velocity versus contact angle relationship. This value seems to give good 
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FIGURE 7. Steady state for A = 1 and A = 5, with G = 1, Os = 0.6, D = 1, I = 0.001 and Bi = 0. 
In each case we consider two different values of the Marangoni number: M = 1 and M = 2. 

agreement with experiment in the drop spreading problem studied by Ehrhard & 
Davis (1991). 

Figure 9(a) shows qmax and q b  as functions of the parameter G, with D = 1, 8, = 
0.6, I I  = 0.001 and no heat transfer, M = 0. We see that both qmax and q b  are 
decreasing functions of G. Since the q b  curve represents values of q which are 
neutrally stable, all values of q below the curve are unstable, while values above the 
curve are stable. The value G = 0 corresponds to a vertical wall. As G increases, the 
pressure drop across the depth of the fluid increases relative to the normal stresses 
and we expect the interface to be more stable, as shown in the figure. In figure 9(b) 
we plot the corresponding values of omax as a function of G. The maximum growth 
rate omax decreases with increasing G. This means that perturbations in the spanwise 
direction will grow more slowly with increasing G, which is a plausible result. The 
steady-state solutions presented in figure 3 for different values of G show that as the 
parameter G increases, the initial hump decreases, and the solution gradually loses its 
oscillatory behaviour when the effect of the vertical pressure gradients is larger than 
the driving force. This is roughly represented by d < 0 in equation (3.6). The changes 
in q b ,  qmax and cmax are large for the range of G studied here, but large values of 
G correspond to very low inclination angles, since Call3 is buried in the definition 
of G, equation (2.24). The linear stability analysis of Troian et. al. (1989) for the 
precursor film model and large inclination angles gives qmax = 0.45 and q b  NN 0.9. 
These values are comparable with the values for G = 0, where qmx = 0.482 and 
q b  = 0.825, 
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FIGURE 8. The growth rate o as a function of the wavenumber q ,  for different values of the 
parameter G and the Marangoni number M ,  with Qs = 0.6, D = 1, 1 = 0.001, Bi = 0 and A = 1. 

The solution is affected by both the static contact angle 8, and the dynamic contact 
angle, the latter controlled by the parameter D. In the case of a time-independent 
straight leading edge we had to deal only with the total value of the contact angle 
8 = 8, + D ,  but now we must treat them as separate quantities. Suppose we fix 
;1 = 0.001, G = 1, M = Bi = 0 and set D = 1, while we let 8, vary. As shown in 
figure 10(a), the behaviour of qmax and q b  with 8, is non-monotonic. On the other 
hand, from figure 10(b) one sees that the changes in omax are relatively faster with 
increasing %,, particularly at larger values of 8,. 

We proceed by taking 8, = 0.6 fixed, while the values of the other parameters remain 
the same, and perform a linear analysis as a function of the ratio of velocity scales D. 
In figure 1 l(a), q b  and qmax are plotted as functions of the parameter D. We again find 
a region of slowly growing q b  and qmax with D. As this parameter becomes larger the 
front becomes more stable with increasing D. The maximum value of q b  and qm as 
functions of 8, and D are very similar. Figure l l ( b )  shows the dependence of omax on 
D. As D grows from D = 0 (the fixed contact angle case), the perturbations initially 
grow, then reach a maximum value of omax, after which omax decreases very slowly. 

The effects of temperature differences are represented by the Marangoni number 
M .  We set G = 1.0, 8, = 0.6, D = 1, A = 1 and Bi = 0, and plot the values of qmax and 
q b  as functions of M in figure 12(a). We find that for small M ,  qmax and q b  increase 
with increasing M .  Recall from figure 9(a) that these wavenumbers decreased with 
the parameter G. This inverse behaviour is the same as for the oscillatory instabilities 
in the x-direction when we studied the steady solutions, where the hump in the 
steady-state profiles of figure 5 increases in amplitude and narrows with increasing 
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FIGURE 9. Linear stability analysis for the parameter G, with 0, = 0.6, D = 1, L = 0.001 and no heat 
transfer. (a) Marginal stability wavenumber qb (- ) and wavenumber for maximum growth rate 
qmnx (- - -) as functions of the parameter G. (b) Maximum growth rate g,,,,, as a function of the 
parameter G. 

M. We conclude that for small M, heating has a destabilizing effect. For large 
values of M the curves for qmax and qb attain a maximum around M = 2 and then 
decrease. Hence, for large M thermocapillary effects could be a stabilizing factor for 
the spanwise perturbations. Similar behaviour is found when for gmax as a function 
of M. For M = 2 we reach a maximum for omax, which then decreases (figure 12b). 

The instability produced by the Marangoni effect can be reduced by allowing more 
heat to dissipate at the liquid-gas interface, as shown in figures 13(a) and 13(b). Here 
we allow the Biot number Bi to vary and plot qmax, gmax and L&,. We set M = 1, and 
the other parameters as in figure 12(a). Now we find that qmax, gmax and qb all decrease 
with increasing Bi, implying improved stability when we increase the dimensionless 
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FIGURE 10. Linear stability analysis for the static contact angle 8,, with G = 1, D = 1, ,I = 0.001 
and no heat transfer. (a) Marginal stability wavenumber q b  (-) and wavenumber for maximum 
growth rate qmax (- -,-) as functions of the static contact angle. ( b )  Maximum growth rate omar as 
a function of the static contact angle. 

heat transfer coefficient. In figures 13(a) and 13(b) as Bi -+ 00 we recover the values 
without heat transfer. 

With this background, we wish to determine how much the assumption made for 
the surface tension variations with temperature, (equation (2.1 1)) affects the linear 
analysis. We plot qmx and q b  for G = 1.0, 0, = 0.6, D = 1.0, /z = 0.001 M = 1.0 and 
Bi = 0 in figure 14(a). For A = 0 no heating is present. As A increases the values of 
qmax and q b  increase rapidly up to A = 1. After that their value decreases very slowly 
with A. In figure 14(b) we plot omax as a function of A. Again we see a region of rapid 
change, where omax grows but as this parameter gets large, this growth is very slow. 
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FIGURE 11. Linear stability analysis for the parameter D, with G = 1, B3 = 0.6, 1 = 0.001 and no 
heat transfer. (a)  Marginal stability wavenumber q h  (-) and wavenumber for maximum growth 
rate qmal (- - -) as functions of the parameter D. (b)  Maximum growth rate omax as a function of 
the parameter D. 

5. Conclusions 
We have determined the steady-state profile for a thin, non-isothermal coating film 

flowing down an inclined plane. In addition, we have studied the linear stability of 
this film to spanwise disturbances. Both the steady-state and the linear disturbance 
equations were solved numerically. It has been shown that, if in the isothermal case 
a singular slip coefficient (2.7) is used in the Navier slip condition (2.6), then the 
steady-state solution is regular in the neighbourhood of the contact line. This was 
done by determining the power series solution about the contact line. This implies that 
a numerical solution can be determined without a special analysis about the contact 
point. If a constant slip coefficient had been used in equation (2.6), singularities in 
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FIGURE 12. Linear stability analysis for the Marangoni number, with G = 1, 1 = 0.001, D = 1, A = 1 
and Bi = 0. (a) Marginal stability wavenumber q b  (-) and wavenumber for maximum growth 
rate qmax (- - -) as functions of the Marangoni number. ( b )  Maximum growth rate o,,, as a 
function of the Marangoni number. 

the interface ho(x) would be expected in the second derivative at the contact point in 
the isothermal case (Haley & Miksis 1991). In the heated case, we also find for our 
model that the interface is a regular function at the contact line. 

We retained the term representing vertical pressure gradients in our model and 
showed that in general it has a stabilizing effect on the interface. The steady solutions 
are shown to have a contact angle composed of a static part and a term due to the 
dynamics. This contact angle tends to increase the height of the hump present in the 
solution. Static contact angles or large variations in the dynamic contact angle have 
a non-monotonic behaviour in the stability analysis for perturbations in the direction 
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FIGURE 13. Linear stability analysis for the Biot number, with G = 1, 8, = 0.6, D = 1. M = 1 and 
A = 1. ( a )  Marginal stability wavenumber q b  (-) and wavenumber for maximum growth rate 
q,,, (- ~ -) as functions of the Biot number. ( b )  Maximum growth rate urnax as a function of the 
Biot number. 

perpendicular to the flow. Both quantities have a very slow destabilizing effect for 
small values, but they have the contrary effect for large values. 

The perturbed steady-state solutions showed that heating the plate produces oscil- 
lations that grow in amplitude and wavenumber in the downstream direction. This 
is in accord with the general observations of destabilization (stabilization) by ther- 
mocapillary effects (Burelbach et a/. 1988 and Joo et al. 1991) of continuous films 
on a heated (cooled) wall. Physically, for films on a heated wall, the troughs are 
hotter than the crests. Since surface tension in nearly all cases decreases monoton- 
ically with increasing temperature, this draws liquid towards the crests, resulting in 
further growth of the crests. Meanwhile, small heating causes a destabilizing effect 
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FIGURE 14. Linear stability analysis for the parameter A, with G = 1, Qs = 0.6, D = 1, M = 1 and 
Bi = 0. (a)  Marginal stability wavenumber qb (-) and wavenumber for maximum growth rate 
qmax (- - -) as functions of the parameter A. ( b )  Maximum growth rate omax as a function of the 
parameter A.  

in the leading front of a coating film. In particular, small heating increases the band 
of unstable wavenumbers and the growth rate of the most unstable wavenumbers. 
For large temperature gradients, the heating could be a stabilizing effect. This non- 
monotonic behaviour is similar to the one found for the contact angle and contact 
angle variations, which suggests that increasing the hump in the steady-state solution 
could be responsible for these phenomena. On the other hand, increasing the Biot 
number and allowing more heat to dissipate at the liquid-gas interface inhibits the 
effect of the heating. 
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Appendix 
We substitute the power series in 5: 

n=O 

into the complete steady-state equation (3.3) and look for the coefficients in the 
complete equation. As before, we use the boundary conditions at the contact line and 
collect powers o f t ,  to obtain the coefficients 

co = 0 ,  c1 = - (e,y + D) , 
Gel 2MAcl +--- 1 

18A(l + 32) 6 9 ,  c3 = 

G c ~  M A  2 
c4 = ~ + ~ (3 ( A  + 4Bi) - 8 ~ 2 )  , 12 72 

and for n > 4 

k - 1  ( n  - k ) !  cn-k 

f 5 k = 2  [ ( G ( n  - k - 2)  C,-k-2 - (n  - k - 3) ! ) cick-J] 

where the j th derivative of the function 

must be calculated applying the chain rule j times. The existence of these derivatives 
at t = 0 is a consequence of the equation of state for the surface tension (2.11). Again 
for n > 3 ,  the coefficients in the series depend on c2. 
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